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The spin-up from rest of a homogeneous free-surface fluid contained in a rectangular 
tank with an inclined bottom has been studied in the laboratory. As in the case of a 
tank without bottom topography, it is found that in the spin-up process leading to the 
ultimate state of rigid-body rotation a number of stages can be distinguished, these 
being (i) the starting flow, characterized by zero absolute vorticity, (ii) the viscous 
generation of cyclonic vorticity at the lateral tank walls, leading to flow separation, and 
(iii) the formation of cyclonic and anticyclonic flow cells, which show a complicated 
interaction. When the topography steepness is small, these cells become organized in 
a regular array similar to what is observed in the non-sloping bottom case. For steeper 
topography, however, no organization into a regular cellular pattern is observed, and 
the relative fluid motion remains unsteady and irregular until eventually it has decayed 
owing to the spin-up/spin-down mechanism provided by the Ekman layer at the tank 
bottom. During the first stage of the adjustment process the starting flow takes on the 
appearance of a large anticyclonic cell that fills the fluid domain entirely. Depending 
on the ratio of the horizontal and vertical lengthscales of the tank this cell is either 
symmetric or asymmetric, with a higher density of streamlines in the deeper part of the 
tank. The coupled vorticity equation, governing the depth-independent part of the 
starting flow, and the potential equation describing its depth-dependent part have been 
solved analytically, and the comparison between these results and observational data 
is generally good. 

1. Introduction 
The process through which a viscous fluid in a rotating system adjusts to a change 

in the boundary conditions is commonly referred to as spin-up. It is a very common 
but quite complex phenomenon that involves many disparate temporal and spatial 
scales. Apart from their occurrence in many industrial situations (for example in 
rotating reactor vessels, turbomachinery, centrifuges for separation of mixtures), spin- 
up processes are relevant to a variety of geophysical and astrophysical situations. For 
example, through the efficient spin-up mechanism time-varying wind stresses exerted at 
the ocean’s surface can induce flows in the ocean interior on timescales that are much 
shorter than those predicted by a purely diffusive balance. Another example is the so- 
called ‘solar spin-down’, caused by the continuous emission of matter by the Sun. The 
‘solar wind’ carries away an amount of angular momentum, which results in a gradual 
spin-down of the Sun. The outer layers are in a state of turbulent convection, and the 
efficient mixing mechanism associated with this state results in a rapid distribution of 
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the angular momentum loss over the Sun’s outer layers. Because such an efficient 
mixing mechanism is not available in the deep interior, it has been postulated that the 
Sun’s interior is rotating more rapidly than the visible surface layers. For a clear 
description of this solar spin-down process as well as some other spin-up phenomena 
the reader is referred to the useful review paper by Benton & Clark (1974). 

In general the term ‘spin-up’ describes the flow adjustment process to a state of 
solid-body rotation with an ultimate rotation rate 0 that is higher than the initial rate 
no, whereas the term ‘spin-down’ is commonly used for the case 0 < 0,. The spin-up 
problem of a homogeneous fluid in a closed axisymmetric cylindrical tank rotating 
about its axis was first described analytically by Greenspan & Howard (1963) for the 
linear case 0 = 0, +AD, with A 0 / 0 ,  4 1. They pointed out that, after changing the 
rotation rate, thin viscous Ekman layers form at the horizontal boundaries of the 
spinning tank on a timescale of O(0-l). These Ekman layers drive a meridional 
circulation in the inviscid interior, which brings interior fluid from larger radii to 
smaller radii, thus providing an efficient spin-up mechanism: since the angular 
momentum of the interior fluid is conserved (viscous effects are negligible in the interior 
on this timescale), the fluid in a ring of decreasing radius acquires a larger azimuthal 
velocity. In this way the fluid gradually spins up to a new state of solid-body rotation 
with the new angular velocity 0. The spin-up time required to reach this state is of 
O ( E - b l ) ,  where E = v / 0 P  is the Ekman number of the flow, with v the kinematic 
viscosity and H the half-depth of the fluid in the tank. After this spin-up stage is 
completed, some small residual inertial oscillations may occur in the interior. These are 
gradually damped by viscous effects, on the much larger diffusive timescale of 
O ( E I E 1 ) .  This ultimate viscous adjustment forms only a minor part of the complete 
spin-up process, and because the actual flow adjustment to the new rotation rate is 
basically completed at the end of the second state, the practical spin-up timescale is 

The process of flow adjustment to a small increment in the rotation rate (AQ/Q + 1) 
is commonly referred to as linear spin-up. It was found in later studies, see for 
instance Weidman (1976a, b), that the spin-up timescale derived for this case also 
applies to nonlinear cases, like for example the spin-up from rest (A0/0 = 1). 

The majority of previous studies on fluid spin-up were restricted to axisymmetric 
tank geometries, the most common one being the axisymmetric cylinder with a rigid 
lid. Recently, the spin-up of a homogeneous free-surface fluid was studied by van Heijst 
(1989) for a variety of non-axisymmetric configurations, including an annulus with a 
radial barrier and a semi-circular cylinder. In such geometries, it was found that the 
flow adjustment to solid-body rotation is characterized by three distinct stages: (i) the 
zero-vorticity starting flow, (ii) the viscous production of vorticity at the lateral tank 
walls, leading to flow separation, and (iii) a subsequent organization into a regular 
cellular pattern, followed by a gradual decay of the relative flow due to the bottom 
Ekman layer. Except for the stage of flow separation, during most of the spin-up 
process the motion in the interior was observed to be approximately two-dimensional. 
A follow-up study by van Heijst, Davies & Davis (1990, hereinafter referred to as 
vHDD) concerned the spin-up from rest of a fluid in a rectangular tank, and laboratory 
experiments were performed with free-surface and rigid-lid upper boundary conditions, 
with both homogeneous and linearly stratified fluids. Again, the flow evolution was 
characterized by the three principle stages. As in the geometries examined by van Heijst 
(1989), the starting flow generally has the appearance of a single anticyclonic cell that 
fills the flow domain completely. The structure of this starting flow can be described 
analytically, under the assumption that the absolute vorticity of the flow is still zero at 

T = l j - 5 Q - l .  
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this stage ; the theoretical results show a perfect agreement with the observed velocity 
field. 

In the next stage, the flow separation due to the cyclonic velocity production at the 
tank walls gives the flow a somewhat irregular appearance. This irregular flow 
behaviour quickly disappears, however, and the growth of flow cells is observed. 
Obviously, the width of the rectangular tank puts a physical limit on the cell growth, 
and ultimately the cells become arranged in a linear array, with alternating circulations. 
The number of cells in this organized stage was found to depend essentially on the 
length-to-width ratio (6) of the container. In the free-surface case, the number of cells 
was always odd, irrespective of the value of 6, with a cyclonic cell positioned in the 
centre of the tank. This latter phenomenon was attributed to the drift induced by the 
parabolically shaped upper surface of the fluid, which tends to bring cyclonic vortices 
radially inwards, while anticyclonic vortices show a tendency to drift to deeper parts 
of the flow domain. 

As an extension to the previous investigation (vHDD), the present study considers the 
effect of bottom topography. In particular, attention is concentrated on the spin-up of 
a homogeneous free-surface fluid in a rectangular container with a sloping bottom. 
Before any experiments were carried out, it was anticipated that the bottom 
topography could seriously affect the flow in the various stages of the spin-up process, 
and that sufficiently steep bottom slopes could possibly even prevent the flow from 
becoming organized in a cellular array. The laboratory experiments have confirmed 
this general conjecture, although it was found that for specific values of the geometry 
parameters the flow evolution was somewhat more complicated than originally 
anticipated. 

The paper is organized as follows. The laboratory arrangement used for the 
experimental work is described in $2, and a general description of the laboratory 
observations is presented in $ 3 .  Next, the starting flow is analysed in $4. The vorticity 
equation governing the depth-independent part of this flow is more complicated than 
for the flat-bottom case, in the sense that it contains an extra symmetry-breaking term 
similar to that describing the p-effect in wind-driven or inertial ocean circulation 
models. A comparison of some analytical results and the laboratory observations of 
the starting flow is given in $5.  That section also describes observational results 
concerning the flow in the later stages of the adjustment process. In particular, the 
relation between the relevant geometry parameters and the occurrence (or non- 
occurrence) of flow organization is considered. Another interesting effect addressed in 
that section is the non-uniformity of the spin-up timescale over the flow domain : in the 
case of a steep bottom slope this may lead to a relatively rapid spin-up in the shallow 
parts of the tank, while the relative motions in the deeper parts persist much longer. 
Finally, a general discussion of the results is presented in $6. 

2. The experimental arrangement 
The spin-up of a free-surface fluid in a rectangular tank was studied in the laboratory 

by use of a turntable whose rotation speed D was continuously adjustable from 0 to 
approximately 2 rad s-l. The rectangular container, of horizontal dimensions L and B, 
was mounted concentrically, i.e. with its centre on the rotation axis of the turntable, 
and was filled with a homogeneous fluid (tap water) to a certain depth H. The tank 
contained a false flat bottom with some prescribed slope relative to the horizontal 
plane. For reference purposes it is useful to define a Cartesian coordinate system 
(x,y) in a horizontal plane, as indicated in figure 1. In all experiments described in 
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FIGURE 1. Definition sketch of the flow geometry 

this paper, the bottom was inclined in the lengthwise direction, i.e. in the y-direction, so 
that fluid depth is dependent on only one coordinate: H = H(y).  As indicated in figure 
1, the largest depth (at y = 0) is Hn, whereas at the shallowest side ( y  = B) the depth 
is H, - AH. It is convenient to define the following geometry parameters : 

horizontal aspect ratio 6 = B/L,  (1 a)  
vertical aspect ratio y = Hn/L, (1 b) 
depth ratio a = AH/H,,, (1 c) 

bottom slope tan p = AH/B, (1 d )  
rotational Froude number F = 4Q2B2/(gH,). (1 e )  

In the present study attention is mainly restricted to cases in which B > L, i.e. to 
horizontal aspect ratios larger than unity (6 > l), although a few experiments have 
been carried out for B < L. The container that was used in the experiments had the 
following dimensions: B = 89 cm, L = 39 cm and a working depth of 25 cm. In most 
cases the length B of the tank was kept at this value and, by mounting two false 
sidewalls into the tank, the width of the fluid domain could be reduced continuously 
in order to cover a range of &values. For practical reasons, however, only the cases 
6 = 2.28, 3.0, 4.0 and 5.0 will be shown. The depth ratio a was varied in the range 0 
to 1. In fact, a = 0 corresponds to a flat horizontal bottom, and the spin-up in that case 
has been discussed in vHDD. The other extreme value, a = 1, corresponds with the 
case in which the depth in the shallowest part of the tank is exactly zero (AH = H,). 
By definition the bottom slope tang, = ay/S, and its value was varied in the range 0 to 
0.18. 

Prior to each experiment, the fluid was completely at rest relative to the non-rotating 
(Q = 0) container. Then, at t = 0 the table was set in rotation, and its angular velocity 
was gradually brought to some prescribed value D > 0. In the experiments described 
in the present paper the ultimate rotation speed had a fixed value 0 = 0.556 rad s- l ,  
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Deep Shallow 

FIGURE 2. Streak photograph showing the starting flow of a homogeneous free-surface fluid in a 
rectangular tank with a sloping bottom that is spun-up from rest. Experimental parameters: S = 2.28, 
y = 0.34, ct = 0.92 and the rotation period T = 11.3 s. The photograph was taken with exposure 
time 1 s. 

and the duration of the table acceleration was approximately 3 s. It should be 
remarked that the flow is slowly rotating in the sense that the Rossby radius (gH)i / (20)  
is generally much larger than L. As in our earlier studies (van Heijst 1989; vHDD), the 
subsequent motion of the fluid was visualized by addition of small tracer particles, 
floating on the free surface of the fluid. The relative motions of these particles were 
recorded by a remotely controlled photo camera mounted in the rotating frame at 
some distance above the free surface. Streak photography (time exposures) enabled us 
- in addition to visualizing the large-scale flow patterns - to measure velocity 
distributions along characteristic cross-sections. 

It should be noted that, strictly, the floating tracer particles only yield information 
about the flow at the free surface. In cases of pronounced bottom topographies it may 
thus be expected that the particle motions are not representative of the fluid flow at 
lower levels. In a few additional experiments, however, the flow was also visualized by 
vertical dye lines (produced by dropping KMnO, crystals in the fluid), which yielded 
information about the vertical structure of the flow field. 

3. Observations 
As discussed in vHDD, the spin-up of fluid in a rectangular tank with a flat, 

horizontal bottom is characterized by a number of stages. The first stage corresponds 
to the starting flow, which takes on the appearance of a large anticyclonic cell, filling 
the domain completely. For the case of a horizontal bottom, this cell is completely 
symmetric and its centre coincides with the centre (x = aL, y = ill) of the flow domain. 
In strong contrast, the starting cell in the sloping-bottom case is asymmetric, with its 
centre shifted towards the deeper side of the tank, as can be clearly seen in figure 2. It 
is obvious from the figure that the asymmetry in the streak pattern is most manifest 
in the direction of the topography gradient, although some less pronounced asymmetry 
with respect to the axis x = +L can be observed in the shallow part of the flow region 
(on the right in figure 2). It was found that the principle asymmetry in the starting flow 
pattern (that in the y-direction) is much weaker for larger values of the horizontal 
aspect ratio 8. In fact, it is almost absent in the cases S = 3 and 4 that will be discussed 
below. 

In the next stage of the spin-up process, the viscous production of cyclonic vorticity 
in the boundary layers at the lateral tank walls comes into play. This vorticity is 
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Deep Shallow 

FIGURE 3 (a-e). For caption see facing page. 

advected by the main flow in a retrograde direction, and is generally found to 
accumulate in smaller cyclonic cells in the corner regions of the flow domain. This 
phenomenon is clearly observed in figure 3, which shows streakline pictures taken 
during the spin-up in a tank with horizontal aspect ratio 6 = 3 and depth ratio a = $. 
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FIGURE 3 .  Sequence of plan-view photographs taken during the spin-up from rest of a homogeneous 
free-surface fluid in a rectangular container with a sloping bottom, with S = 3, y = 0.81 and a = 0.66. 
The flow is visualized by tracer particles floating on the fluid surface. The photographs were taken 
at (a) t = O.lT, (b)0.7T, (c) 1.1T, (d) 1.4T, (e) 1.8T, (f)2.7T, ( g )  3ST,  (h)4.OT, (i)4.4Tand(j) 8.OT, 
with T = 11.3 s the rotation period. The exposure time was 1 s for (a-i) and 2 s for ( j ) .  
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Deep Shallow 

FIGURE 4(u-e). For caption see facing page. 

As remarked before, the starting flow cell (figure 3a) is much less asymmetric in this 
case than in the case 6 = 2.28 (figure 2). In the next frame (figure 3b) the growth of 
cyclonic corner cells can clearly be seen: larger cells at the downstream ends of the 
longer sidewalls, and smaller cells at the downstream ends of the endwalls. The larger 
cyclonic cells show a rapid growth, while the smaller ones seem to vanish very quickly 
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FIGURE 4. As figure 3, but now with y = 0.54 and a = 0.98. The photographs were taken at 
(a) t = O.IT, (b) 0.7T, (c)  1.1T, ( d )  1.8T, (e) 2.8T, (f) 3.9T, ( g )  5.3T, (h) 6.2T, (i) 7.1Tand (5’) 8.OT, 
with T = 11.3 s. The exposure time was 1 s for (a-f) and 2 s for (g-j’). 

(see figure 3 c). Up to this stage the flow evolution is very similar to the flat-bottom case 
(see figure 1 of vHDD). In the next stages, the original anticyclonic cell is observed to 
be pinched by the steadily growing corner cells, but in a definitely non-symmetric way 
(see figure 3 d, e) : the pinching results in a large anticyclonic cell in the shallow end of 
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Deep Shallow 

FIGURE 5(u-e). For caption see facing page. 

the tank, and two smaller anticyclonic cells near the tank centre and near the deeper 
end, respectively (see figure 3f>. In the subsequent frames (figure 3g-j) one observes a 
gradual rearrangement of the flow into a more or less regular pattern with alternately 
cyclonic and anticyclonic cells. Although some minor deformations of the cells do 
occur (compare figures 3i and 3j ) ,  the pattern itself was found to be stable and to 
persist until all relative motions had decayed due to the Ekman layer at the bottom of 
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FIGURE 5. Continuation of the experiment shown in figure 4. The photographs were taken at 
(a) t = 8.9T, (b)9.7T, (c) 10.6T, ( d )  12.4T, (e) 13.3T, cf) I5.0T, (g) 16.8Tand(h) 19.5T, with T = 11.3 s. 
The exposure time was (a-b) 2 s, (c-f) 3 s, (g) 4 s and (h) 5 s. 

each cell. The eventual formation of cells was also found in the flat-bottom case, but 
with one major difference: in the present case (6 = 3 )  with the sloping bottom the 
number of cells in the quasi-ultimate stage is n = 4 (the small cyclonic cell at the 
shallow end at the right of figure 3 j  was observed to disappear quickly), whereas in the 
flat-bottom case S = 3 this number appeared to be n = 3, with a cyclonic cell in the 
centre. The reason for this difference most probably lies in the asymmetric flow 
evolution prior to the pattern formation, and also in the behaviour of individual cells 
above topography, as will be discussed later in this section. 

Figure 4 shows a similar experiment with aspect ratio 6 = 3, but now with a depth 
ratio a = 0.98 : the fluid depth at the right-hand sides of the photographs in that figure 
is almost zero. The major effect of this steeper bottom topography is immediate from 
the flow evolution. Although the starting-flow pattern is very similar to the one in 
figure 3, the subsequent growth of cyclonic cells in the corners of the domain is different 
from the small-a scenario: it is clearly seen in figure 4(b,  c) that essentially one 
cyclonic cell is formed, namely in the deep part of the flow domain, at the downstream 
end of the long sidewall. This can be understood by considering a vertical vortex tube 
that is advected by the main flow along the lateral walls, in the retrograde direction. 
The stretching of the cyclonic-vorticity tube moving in the boundary layer into the 
deeper part of the tank results in an intensification of vorticity and therewith in a 
relatively strong cyclonic cell. On the other hand, a vortex tube moving in the boundary 
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FIGURE 6. As figure 3, but now with 6 = 4, y = 0.72, C( = 0.5 and tang, = 0.09. The photographs were 
taken at (a) t = O.lT, (b)  0.9T, (c) 1.3T, ( d )  1.8T, (e) 2.7T, ( f )  3.1T, (g) 4.OT and (h) 9.7T, with 
T = 11.3 s. The exposure time was 1 s for (a-g) and 2 s for (h). 



Spin-up offluid in a rectangular container with sloping bottom 137 

layer along the opposite tank wall is gradually squeezed while entering the shallow part 
of the flow domain, which counteracts the viscous production of cyclonic vorticity in 
the boundary layer. As a result, only a very weak cyclonic cell (or no cell at all) is 
formed in the shallow downstream end of that sidewall. This nicely illustrates how the 
stretching/compression of vortex tubes moving over bottom topography may 
dynamically intensify or weaken the vorticity generated by viscous effects in the lateral 
boundary layers. 

Within a few rotation periods the flow seems to have formed a pattern of three cells 
(figure 4 4 ,  but this configuration is not stable, as can be concluded from the 
subsequent irregular flow patterns (figure 4e-j). The last picture of this sequence was 
taken at the same time ( t  = 8.0T, with T = 11.3 s the rotation period) as figure 3 (j), but 
the flow does not show any formation of a regular, cellular pattern. Figure 5 shows a 
sequence of photographs illustrating the further evolution of the relative flow, from 
which it can be seen that the flow does not reach a quasi-steady state. The vortices keep 
on interacting in a complicated fashion, and a continuous process of merging and 
splitting of cells is observed. Also, at irregular intervals new cells are formed along the 
lateral boundaries of the flow domain. This phenomenon is attributed to the viscous 
generation of vorticity in the boundary layers. 

Another striking feature of the flow evolution in this a z 1 case (figures 4 and 5) ,  
when compared to the small-ol case (figure 3), is the rapid decay of relative motion in the 
shallow part of the tank, which is obviously due to the Ekman layer at the sloping 
bottom. Although the unsteady Ekman layer has a very complicated structure in the 
present case, it is anticipated that the characteristic decay timescale associated with the 
spin-up/spin-down mechanism provided by the Ekman layer applies to the present 
case : 

TE = 2H/(vSZ)-;, (2) 

with H the local depth of the free-surface fluid, and v the kinematic fluid viscosity. 
Since v and SZ are constants, whereas H i s  a function of the upslope coordinate y ,  the 
effective decay timescale is a function of this coordinate as well. More specifically, in 
the case of an inclined bottom with a constant slope in the y-direction, the decay 
timescale of the relative motion is linearly dependent on y .  This feature will be 
discussed in more detail in $5.3. 

It should be remarked that in the ultimate stage of cell formation, either in a regular 
or in an irregular pattern (as in cases with relatively steep topography, see e.g. figure 
5) ,  the flow is to a good approximation two-dimensional, as can be concluded from the 
absence of any substantial distortion or tilting of vertical dye lines that were produced 
by dropping KMnO, crystals in the fluid. 

Additional experiments were carried out for the case with horizontal aspect ratio 
6 = 4, both for weak (a = 0.5) and strong (a = 0.89) topographies. Figure 6 shows the 
flow evolution for the former case, which appears to be very similar to the weak- 
topography case (a = $) illustrated by figure 3. The only main difference is that the 
pinching of the central anticyclonic cell is now much more symmetric (see figure 6 c-e), 
and almost similar to what can be observed in the flat-bottom case (a = 0; see figure 
1 of vHDD). 

Within typically 5 rotation periods of the turntable the flow is seen to become 
organized into a regular array of five cells (figure 6g,  h) of alternate signs, with an 
anticyclonic cell in the centre. This configuration turned out to be stable, and the cells 
remained intact until the relative flow in the cells had completely decayed due to the 
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FIGURE 7. As figure 6, but now with y = 0.40 and a = 0.89. The photographs were taken at 
(u)t=O.lT,(b)0.9T,(c) 1.8T,(A)3.1T,(e)4.9T,(f)7.1T,(g)9.7Tand(h) 15.9T,withT= 11.3s. 
The exposure time was (a-d) 1 s (e,f> 2 s, (g) 3 s and (h) 5 s. 
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bottom Ekman layer. The evolution of the flow in the S = 4 case with relatively steep 
topography (a = 0.89) is illustrated by figure 7, which shows grosso mod0 the same 
features as observed in the experiment with S = 3, a z 1 (see figures 4 and 5 ) :  (i) the 
anticyclonic cell of the starting flow is more or less symmetric (figure 7); (ii) only one 
cyclonic corner cell is generated, viz. in the deeper part at the downstream end of the 
longer sidewall (figure 7 b)  ; (iii) the subsequent evolution of the flow is highly irregular, 
without showing any tendency to establish an organized pattern of cells; (iv) again, 
the relative flow in the shallow part of the flow domain shows a rapid decay, as a result 
of the decreased Ekman timescale (2) for shallower depths. 

4. Analysis of the starting flow 
In the initial stage of the spin-up problem the flow will be inviscid. This implies that 

the vorticity as observed from an inertial frame of reference will remain zero and the 
flow is essentially a potential flow. In a frame co-rotating with the tank the relative 
vorticity is just equal, but opposite, to the uniform value 252 of the tank. 

In a flat-bottomed tank the flow consists of a single clockwise gyre, symmetric about 
the axes of symmetry of the tank (assumed to be rectangular in this study). Assuming 
that the free-surface remains essentially flat (such that there is no forcing of vertical 
motions) and assuming the fluid to be incompressible (such that a stream function can 
be introduced) the flow in the rotating frame of reference is determined by the 
conservation of vorticity, leading to a single Poisson equation for the stream function 
(see vHDD). When the bottom of the rectangular tank is sloping, however, the 
symmetric flow induces an upward vertical mass flux in that half of the tank where the 
flow is upslope, and a downward mass flux in the other half (see figure 8). These vertical 
mass fluxes are connected by an alongslope horizontal mass flux having the shallow 
side at its left (for a tank rotating anticlockwise). The height above the bottom to which 
this mass flux penetrates is determined by the vertical aspect ratio y. For large values 
of y2 (9 1) it is bottom trapped and the mass is returned in a shallow layer above the 
bottom, whereas for small values of this aspect ratio (yz 4 1) it extends throughout the 
fluid, right up to the surface, leading to a vertically uniform horizontal alongslope mass 
flux. This additional topographically induced flow component moves the stagnation 
point (the centre of the gyre) towards the deeper part: a symmetry breaking of the 
surface circulation pattern which is clearly a function of the vertical aspect ratio y. 

In the next subsection ($4.1) we consider the equations that govern the flow in the 
initial spin-up phase. As remarked in $ 3 the observed flow in most stages of the spin- 
up process is very close to two-dimensional - such as is expected to occur in a shallow 
tank (y2 < 1). For this reason, in $4.2, we treat the case that the topographically 
induced vertical flow varies linearly between its bottom and (zero) surface value, such 
that the horizontal mass flux is divergenceless. This enables us to evaluate the vertically 
uniform flow in response to an impulsively rotating tank in terms of the mass transport 
stream function. In the case that the tank width, L, approaches its depth H,, the 
topographically induced flow becomes more complicated and this case is discussed in 
$4.3 for slender tanks (8 9 1). Finally, there is one class of geometries in which the 
cross-slope lengthscale B equals the change in depth, AH (such that a = 1 and y = S), 
which can be solved for arbitrary alongslope lengthscale L. This will be discussed in 
$4.4. 
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FIGURE 8. Schematic picture of the inviscid response in a rotating tank (angular velocity 0) with 
sloping bottom (depth difference AH). The non-axisymmetric tank configuration produces, by 
conservation of vorticity, the depth-independent anticyclonic stream-function flow (denoted by a 
solid line at the surface), symmetric with respect to the tank axes. The cross-slope flow in turn drives 
a potential flow (dotted lines) which contributes a near-surface flow in the positive x-direction. 
Depending on the degree of bottom trapping (which is determined by the vertical aspect ratio 7)  this 
moves the surface position of the cell centre (position P) to the deeper region. As the return flow is 
stronger near the bottom this stagnation point (Q) has been displaced even further. The complete 
stagnation line has been depicted schematically by the dotted curve PQ. 

4.1. Equations governing the inviscid spin-up 
The steady Euler equations in a frame of reference rotating anticlockwise with angular 
velocity D about the z-direction (unit vector f )  are given by 

(0+2DL) x u  = -V(p/p++ * u+gz), (3) 
v . u = o ,  (4) 

where u = (u, v, w )  denotes the velocity components in the x-, y-  and z-directions of a 
Cartesian frame, respectively. Here p is the pressure, p the uniform density and g the 
acceleration due to gravity, directed downwards along the z-axis. 

At solid boundaries the normal velocity vanishes : 

u - n  = 0, ( 5 )  
where n denotes the unit normal vector at the boundary. In the present experiments the 
upper surface is free. The variations in the free surface, however, are small when the 
Froude number, defined in ( l e ) ,  is small and ( 5 )  can be applied at z = 0 as well. 

Since there is no production of vorticity in the inviscid starting phase, the absolute 
vorticity is conserved, i.e. equal to its (zero) value prior to the spin-up: 

From (3) one derives the Bernoulli integral 
0+252f = 0. (6)  

p/p+$ - u+gz = constant, 
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which determines the pressure at each position in the fluid. 
The starting flow is thus governed by (4) and (6) subject to the constraint (5). The 

general solution is determined by a combined three-dimensional potential, $, and a 
two-dimensional stream function, $: 

where the subscript-derivative convention is used. 
u = $x-$y, v = $,+$.,, w = (7)  

A21c. = -252, A3$ = 0 ,  @a,  b)  

From (4) and (6), @ and $ have to obey 

with A2 and A3 denoting the (horizontal) two- and three-dimensional Laplacian 
operators, respectively. The boundary conditions at horizontal and vertical boundaries 
are 

where $n denotes the derivative of $ normal to the boundary and, at sloping 

(9 6) 
boundaries, 

The 'forcing', at the right-hand side of (Sa) ,  is thus via the stream-function field, 
resulting in motions in the plane normal to the rotation axis. The potential flow is 
entirely due to cross-slope motion at sloping boundaries, see (9 b). 

In the experiments considered in the present paper the tank has a rectangular shape. 
Its boundaries are given by x = 0, L and y = 0, B. The surface, at z = 0, is now assumed 
to be flat (rigid), while the bottom, at z = -H(y) ,  is linearly sloping and given by 

For this particular problem the boundary conditions read 

(V$ + R  x V$) . n = 0. 

H(Y) = Ho(1-aYlB). (10) 

$ = O  at x = 0, L and y = 0, B ;  ( 1  1 4  
4 x  = 0 at x = 0, L;  (1 1 b)  
$y = 0 at y = O , B ;  ( 1  1 c) 
$2 = 0 at z =  0;  (1 1 4  

= - ($u+$x)Hu at z = -H(Y). (1 1 el 

The explicit analytic solution of the three-dimensional potential field is usually limited 
by the (non-) existence of the Green's function for a particular geometry. Indeed, even 
for the simple linearly sloping boundary, treated presently, such an explicit solution 
exists only for the specific case that the bottom slopes right up to the surface ( a  = 1) 
and has a slope q =  45" (such that B = AH).  This case is discussed in $4.4. In the next 
two sections two idealizations will be made that allow an approximate determination 
of the flow field. 

4.2. The startingjow in a shallow tank: y 2  4 1,6 = 0(1) 
After proper scaling and expansion of the velocity field in the small vertical aspect ratio 
(squared), (4) and (6) yield the classical shallow-water result that the horizontal flow 
is vertically uniform. The horizontal transport, to lowest order, is consequently non- 
divergent : 

(12) 
a a 

-(uH)+-(OH) = 0 
ax aY 

and allows the introduction of a transport stream function Y according to 
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(15) 
1 
H 

V 2 Y - - ( V H -  V Y )  = -2QH, yields 

with V now denoting the horizontal two-dimensional gradient. This equation is solved 
subject to the requirement that 

Y=O at x = O , L  and y=O,B. (16) 

Inserting the specific linearly sloping bottom profile ( lo) ,  the equation describing the 
shape of the transport stream function associated with the starting flow in a shallow 
tank is given by 

Approximate solution for small bottom slopes (a < 1 )  
Before turning to an exact solution of (17) it is useful to consider the approximation 

of a nearly flat bottom: a = AH/H,,+ 0,  for which (17) takes a relatively simple form: 

V 2 Y + ~ Y y  = -2QH0 (a < 1) .  ( 1 8 )  

This is particularly relevant as the limit a-tO is hard to assess in the subsequent 
solution for arbitrary values of a. 

After finding a particular solution of (18), the method of separation of variables can 
be applied to solve the homogeneous equation (subject to inhomogeneous boundary 
conditions). This solution procedure is straightforward, and yields 

4QL2 5 {sin (:;n;li;/L Y(x, y) = - $(x2 - X L )  - - 
x3 ,=,, 

x [e-iaa(y’B-l) sinh d, y/B + e-hoLy/B sinh d,( 1 - y/B)]/sinh d, 

(19b) 
with 

d, = ($az + (2n + 1)2x2S2p. 

Note that in the limit a 3 0 this solution correctly approaches that for the flat-bottom 
case presented by vHDD. 

The streamline pattern according to this solution shows a large cell that fills the 
domain completely. This cell is symmetric about the line x = iL, and shows a weak 
asymmetry about the line y = $B. The weakness of this asymmetry is due to the small 
value of a, to which (22) is restricted. For values a = O(l) ,  the solution (19) shows a 
pattern that resembles the observed starting flow (see figure 3) to a remarkable degree, 
but such a comparison lacks a physical basis. Instead, we return to the original 
equation (17) in order to derive an exact analytical solution. 

Exact solution 

values of a, given by (see Appendix A) 
The general solution of (17) for the linearly sloping topography (10) is, for arbitrary 
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Deep Shallow 

FIGURE 9. Streamline pattern according to (20a) for the case S = 2.28, a = 0.92, y2 + 0. 

7c2 cash (A,  a/ B) (X - $L) 
+-QB3 2 

2 n=O cosh($A,aL/B) 

with A, determined by 

J,(A) Y,(A( 1 - a)) - J,(A( 1 - a)) &(A) = 0. 

Here 4 and & are first-order Bessel functions and HI  is the Struve function. 
For the case a = 1 and eigenvalues A, = yl:, (the zeros of the first-order Bessel 

function of the first kind) the series expression is a regular Fourier-Bessel series, and 
the solution reads 

2 

Y = -$2B2y( 1 -$) 

(1 -$)A(.\.( 1 -z)) . (21) 
cosh(Ana/B)(x-$5) 

cosh ($An aL/B) B A3, W n )  
+ d 2 B 3  C 

n=o 

The streamline pattern of the starting flow according to the exact solution (20) is 
plotted in figure 9 for the particular case 6 = 2.28, a = 0.92, which corresponds to the 
experiment shown in figure 2. In agreement with the experimental observations, the 
theoretical flow pattern shows a marked asymmetry, with the highest streamline 
density in the deeper part of the flow domain. In order to quantify the degree of 
asymmetry, the scaled position $ / B  of the cell centre has been plotted in figure 10 as 
a function of the depth ratio a = AH/Ho for the case 6 = 2.28. In the extreme case 
a = 1 the position of the cell centre is given by P/B = 0.2599, whereas for a = 0 it lies 
at $/B = 0.5, as was to be expected. 

By differentiation of the stream function (20a) one derives expressions for the 
velocity components u, ZI in the x, y-directions, respectively. The scaled velocity 
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FIGURE 10. Graph showing the scaled position $ / B  of the cell centre as a function of a for the 
cases S = 2.28 (a) and S = 4.0 (b), according to the theoretical solution (200). 

1 

1 

YlB 

FIGURE 11. Graphs showing the distribution along the axis x = iL of the scaled velocity u/u(O) as 
derived from (20a). Parameter values: (a) S = 2.28, a = 0.92, (b) S = 4.0, a = 0.89. 
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distribution u(y/B)/u(O) along the symmetry axis x = +L is plotted in figure 1 1  for the 
cases (a) 6 = 2.28, a = 0.92 and (b) 6 = 4.0, a = 0.89. Obviously, this velocity 
component has extreme values at the endwalls of the tank, with the largest value (in 
an absolute sense) occurring in the shallow end; the value 0 corresponds with the centre 
of the flow cell. It can be seen, in particular from the plot for the larger aspect ratio 
(figure 1 1  b), that the velocity profile is rather flat on the ‘shallow side’ of the cell centre, 
while large gradients are present near the endwalls. It should be kept in mind that the 
solution of the starting flow as discussed in this section allows free slip at the lateral 
boundaries. In reality, however, thin shear layers will develop at the flow boundaries 
through which the no-slip condition at the walls is satisfied. 

The analysis above, giving the vertically uniform flow, is the zeroth-order term of an 
infinite sequence of contributions. As such it applies only to very shallow regimes. 
However, both the parameter values in the experiments (figure 2-7), and the observed 
variations in positions of the cell centre at the surface ($5 )  show that a depth- 
independent theory is not adequate to cover all observed phenomena. Although the 
next-order (y2) depth-dependent velocity components can be calculated in principle it 
is more fruitful to consider a complementary class of problems in which the vertical 
aspect ratio, y, is now assumed to be 0(1), but for which the horizontal aspect ratio 
is large, i.e. 6 $- 1. 

4.3. The startingjow in a slender tank: 6 % 1 ,  y = O(1) 
The solution of the Poisson equation (8a), subject to the boundary condition (1 1 a), is 
(for arbitrary horizontal aspect ratio) given by vHDD and (19) with a = 0; here it is 
expressed in the slightly different form 

852 O0 coshpi(y-$B)sinpix 
L i=o coshpi+B pi ’ @ = Qx(L-x)---C 

with pi = (2i+ l)n/L. (23) 

From this the cross-slope flow v, is obtained as 

which is antisymmetric with respect to x = +L. Expressing the linearly varying part in 
v, in a similar infinite series (Oberhettinger 1973) the cross-slope velocity can also be 
expressed as a single infinite cosine series, facilitating the subsequent analysis for the 
potential: 

m 

v, = c v y  cos pi x, (25) 
i = O  

where 

It is this cross-slope flow that is driving the potential flow (boundary condition ( 1  1 e)). 
Lacking a general expression for the Green’s function of the potential problem (8 b) 
with boundary conditions ( 1  1 b-e) it is at this point that some additional assumption 
has to be made. In this section it is assumed that H, L 4 B (6 $- 1). Equations (8 b) and 
(1 1 b-e) then simplify to a Neumann problem (in which the flux, V$, is specified at the 
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FIGURE 12. Left: cross-sectional view of the normal velocity u, positive, i.e. out of the paper in the 
x-direction, at x = iL, the plane of symmetry. Right: top view of the surface circulation in a slender 
tank ( B  = 3 ,  a = 0.9) for (a) y = 5 (H,, = 5, L = I), (b) y = 1 (H,  = 1, L = 1)  and (c) y = 3 (H,, = 1, 
L = 5). Note that the aspect ratios of the figures are not on scale. 

boundary) in a rectangle (whose ' depth ' decreases parametrically with increasing 
v-position) : 

($+$)$ = 0;  

$ , = O  at x = O , L ;  

$ z  = 0 at z =  0; 

$z = +,H, at z = -H(y).  



Spin-up of JEuid in a rectangular container with sloping bottom 147 

-1 

FIGURE 13. Wedge-shaped region (solid lines) and virtual, triangular regions (dashed lines) in the 
( y ,  z)-plane. Original ( y ,  z) and rotated (7,o coordinate systems. 

Owing to the antisymmetry with respect to the x = :L plane the boundary-forcing term 
in (27d) satisfies Neumann’s compatibility condition (Zauderer 1989, p. 459), which 
requires that the line integral of the boundary forcing should vanish. Physically this is 
merely a condition that total mass is to be conserved, which is obviously satisfied. 

The solution of (27) can be obtained by employing the modified Green’s function for 
a rectangle (Zauderer 1989, p. 463). Convolution with the forcing term yields 

with H(y)  given by (10). From (7), (22) and (28) the approximate three-dimensional 
velocity structure is obtained. In figure 12 contours of the u-velocity in the plane of 
symmetry x = :L (where both other velocity components vanish), and a top view of 
the surface circulation are given. As is clear from this figure the solution is close to 
vertically uniform in the case y = f, 6 = 3, see figure 12(a). Numerical evaluation of the 
series expressions in the velocity field for these parameter values shows that the velocity 
field approaches the two-dimensional velocity field of $4.2 (in the limit y2+O). For 
large values of y2 (y = 3, 6 = 9, see figure 12c) the velocity field is bottom-intensified. 
The corresponding surface circulation changes from asymmetric, with the cell centre 
shifted towards the deeper side of the basin, to symmetric. Notice that this zeroth-order 
velocity field fails to represent the velocity structure correctly at the shallow side of the 
basin (y+ B). The location of the stagnation line (u = 0) also creates the wrong 
impression that the location of the cell centre and hence the asymmetry increases with 
decreasing lengthscale L. As the surface velocity field in figure 12(c) shows, the flow is 
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basically symmetric at L = $, the artificial small value of the location of the cell centre 
being corrected for by the higher-order solution (figure 15). 

Owing to the approximations involved neither the solution in the previous section 
nor that in the present one is able to simultaneously satisfy both differential equations 
(8) as well as all of the boundary conditions ( 1 1 ) .  One single exception, alluded to 
before, will be considered now. 

4.4. The startingjlow in a wedge-shaped container: CL = 1 ,  y = S 
When the bottom-slope angle Q, = 45" the problem to be solved is symmetrical and can 
be extended by adding virtual triangular regions so as to produce a solid of square 
cross-section (figure 13). In order to retain the symmetry (and thus be able to guarantee 
that the no-flux boundary conditions at y = 0 and z = 0 are satisfied) the normal 
gradient of 4, q5n, at each of the sloping sides of the added triangles is taken to be equal 
to the boundary forcing in ( l l e ) ,  determined by -$$ Hu. Since AH = H,, = B this 
length is taken as the scaling length and the remaining lengthscale L is expressed in 
terms of it. Also the stream function and potential will be scaled by 2!2B2. 

Prior to solving the Laplace equation for the potential it is convenient to rotate 
coordinates and introduce (see figure 13): 

7 = y - z ,  6 = y+z ,  (29) 

where the coordinate 7 is not to be confused with the free-surface elevation. In view of 
the simple series form of the forcing (25), (26), a similar series expression is adopted for 
the potential a, 

4 = c p) cos pi x. (30) 
i=O 

Substituting this into the Laplace equation one has to solve 

subject to the boundary conditions 

@) = f ! ju r ) (q )  at 6 = +_ 1.  (32 b) 

The solution of this problem is standard and can be obtained from the Green's function 
in a rectangle (see Appendix B). The potential thus acquires the following expression, 
symmetric in 7 and 6: 

m 

4 = - 252 ---{tanhpi/2 cospix C en 
L i=o Pi n=O 

with pi given by (23) and 

while Neumann's number is denoted as 

1 ,  n=O 

e n = (  2, n = 1 , 2 , 3  ,.... 

(33 b) 

(33 c) 

Equations (7), (22), (29) and (33) together determine the complete structure in the 
wedge-shaped domain. Figure 14 is similar to figure 12 except that the velocity field is 
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FIGURE 15. The cell-centre position j at the surface (z = 0) for AH = H,, = B = 1 as a function of 
dimensionless along-slope lengthscale L. 

correctly parallel to the horizontal boundaries everywhere now. As before, the solution 
varies for decreasing alongslope lengthscale between vertically uniform to bottom- 
intensified, with an associated surface circulation pattern which varies from asymmetric 
to symmetric. The decrease of the cell-centre position at the surface with increasing 
alongslope lengthscale is shown graphically in figure 15. 

5. Discussion of observations and comparison with analytical results 
5.1. The startingflow 

The observed starting flow, as visualized in the streak photograph of figure 2, appears 
to agree very well with the theoretical streamline pattern of the initial flow, see figure 
9. A quantitative comparison between theory and experiment is given in figure 16, in 
which the measured velocity distribution u(y/B)/u(O) along the symmetry axis of the 
initial flow cell (x = iL)  is plotted together with the theoretical profile, according to 
(20), for the case 6 = 2.28. It is clear that the agreement between the experimental data 
and the theory is very good, even close to the endwalls of the tank ( y / B  = 0 and 1). 
Obviously, the various boundary layers at the tank walls are still very thin at this stage, 
so that the starting flow can indeed be described in the potential-like approach 
discussed in the beginning of $4. 

Another comparison between theory and experiment is given in figure 17, in which 
the observed positions of the cell centre are plotted as a function of the depth ratio a, 
together with the theoretical curve, for two sets of experiments, (a)  6 = 2.28 and (b) 
6 = 4.0. Although the tendency of the experimental data to lie at increasing distance 
below the line ?/B = 0.5 for larger a-values is observed in both graphs, the numerical 
values of the data points show a systematic deviation from the theoretical values: all 
the data points lie above the theoretical curves. The deviation is due to the fact that the 
theoretical curve, obtained from (20), has been derived for very shallow basins only. 
A correction for the situation where the transversal lengthscale, L, matches the depth 
scale H,,, has not been attempted in the present study, but the results of $54.3 and 4.4 
strongly suggest that this theoretical curve gives an upper bound of the cell-centre 
displacement only. The true displacement, then, will be less and in fact vanishes for 
increasing vertical aspect ratio y (see figure 15). 
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FIGURE 16. As figure 11, with the dots (0) representing measured values. 
Parameter values: S = 2.28, a = 0.92. 

5.2. Cell formation us. irregular f low 
As described in $3, the viscous production of vorticity in the lateral boundary layers 
leads to the creation of cyclonic cells, which quickly distort the initial anticyclonic cell 
of the starting flow. It was seen that under certain conditions the interaction of the 
various cells results in a quasi-steady regular array of cells of alternating circulations 
(see figures 3 and 6), similar to what was observed by vHDD in the case of a tank with 
a non-sloping bottom. In other cases, however, such an organization into cells is not 
observed (see figures 4, 5 and 7), and the flow remains irregular until eventually all 
relative motions have decayed due to the spin-up/spin-down mechanism provided by 
the Ekman layer at the bottom of the container. 

In a recent study of barotropic vortices over topography in a rotating tank, 
Carnevale, Kloosterziel & van Heijst (1991) demonstrated - both experimentally and 
numerically - that vortices show a substantial drift owing to the topographic forcing. 
They investigated a variety of bottom topographies and showed that in general 
cyclonic vortices show a drift in the local ‘north-west’ direction (north being defined 
as the direction of maximum upward bottom slope), i.e. they climb the topography 
under a certain angle. In contrast, anticyclonic vortices show a tendency to translate 
in the local ‘south-west’ direction. It is anticipated that this topography effect is also 
a major factor in the spin-up flows considered in the present paper, in the sense that 
the different topography-induced drift motions of the cyclonic and anticyclonic cells 
can destroy a regular cellular array (or prevent its formation), provided that the 
topography is sufficiently steep. In order to find out if there is some critical topography 
steepness in the cell formation process, a number of experiments were carried out for 
different values of the aspect ratio 6 and the depth ratio a. The results are presented 
in figure 18, with the black dots repTesenting experiments in which cell organization 
was observed, and the open circles representing experiments in which no such 
organization occurred. For brevity, these cases are also referred to as being ‘stable’ and 
‘unstable’, respectively. Cases in which this distinction was not clear are indicated by 
plus signs. It should be noted that the experiment presented in figure 3 (6 = 3, a = 
0.66), in $ 3  discussed as an example of a ‘stable’ case, is marked in figure 18 as an 
indeterminate case. This experiment is denoted as ‘indeterminate’ because repeated 
runs for the same experimental parameter values revealed both organized and non- 
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FIGURE 17. As figure 10, with the dots (0) representing experimental data, 
for (a) S = 2.28 and (b) 6 = 4.0. 

organized final states. The broken line in figure 18 has been drawn by eye, and marks 
the boundary between the stable and unstable regimes in the (a, 6)-graph. The results 
clearly show that the flow is unstable (non-organized) for larger a-values and moderate 
&values, whereas pattern formation occurs for larger values of the aspect ratio 8. In 
fact, the graph suggests that for 6 >  5 the flow is stable, i.e. becomes organized, 
regardless of the value of a. On the other hand, configurations with smaller 6-values 
seem to yield unstable flow patterns even for very weak topography. The parameter 
range 0 < 6 < 1 corresponds with a physically different situation, i.e. with a bottom 
sloping in the widthwise direction. Experiments carried out for 6 = 1 and 0.43 suggest 
that for this parameter range there exists some critical value a = a, above which the 
flow is unstable, irrespective of the &value. 

The structure of the stability/instability regimes in the upper part (6 > 1) of the (a,  
6)-graph can be qualitatively understood by noting that the flow evolution is governed 
by two competing effects. One of these is the topography-induced drift of vortices 
(discussed earlier in this section), which tends to destabilize the flow. On the other 
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FIGURE 18. Graph showing the type of flow observed in spin-up experiments as a function of the depth 
ratio a and the aspect ratio 6. The symbol refers to experiments in which organization into cells 
was observed, whereas the symbol 0 refers to experiments in which no cellular pattern was formed. 
Cases in which the organization was questionable are denoted by the symbol + . The bottom slope 
tanp, was varied in the range 0.06 to 0.18. The broken line has been drawn by eye. 

hand, the (approximately) two-dimensional nature of the flow provides the self- 
organization mechanism through which the pattern formation occurs. It was found by 
van Heijst (1989) and by vHDD that the flow cells in the organized state tend to fill the 
entire domain, and their growth is physically limited by the presence of the lateral 
boundaries. In the present case, it is the width (L) of the container that provides the 
upper limit to the cell size. As will be shown later in this section, the cells in the 
organized state have diameters close to the value of L. Larger values of the aspect ratio 
6 correspond with a larger number of cells, with diameters that are inversely 
proportional to 6. Because for a given topography steepness a the smaller cells are 
likely to be the least affected by the bottom topography, it is then clear that a larger 
aspect ratio 6 stabilizes the flow and thus favours the self-organization into a cellular 
array. In the spin-up experiments with a flat non-sloping bottom (a = 0) as described 
in vHDD it was found that the number of cells in the organized state is always odd, 
regardless of the aspect ratio 6 of the container. This phenomenon was attributed to 
the ‘topographic’ effect of the parabolically shaped upper surface, which causes 
cyclonic vortices to drift to the centre of the tank. With a cyclonic vortex in the middle, 
an organized symmetric cell pattern will thus always contain an odd number of cells: 
for integral odd &values, n = 6, whereas for integral even &-values, y1 may assume the 
values (6- 1) or (S+ I), depending on small perturbations in the initial stages, which 
affect the subsequent flow evolution towards the cellular array. 

In contrast to these observations, the experiments with a sloping-bottom tank in 
which organization was observed (i.e. with topography steepness a that is sufficiently 
small to allow organization) revealed that the number of cells is not necessarily odd, 
and is to a good approximation given by 

n = env (6+ l), (34) 

provided that S >  1. Results obtained during 17 experiments with different aspect 



I 

5 1 
: l i  
i i i  

0 I- 

& 2  3 4 5 6 
6 

FIGURE 19. Graph showing the observed number of cells (n)  as a function of the aspect ratio. The 
experimental data are denoted by dots (note that the open circles represent single observations, 
whereas the black dots represent a total of 15 observations), while the solid line designates the 
relationship n = env (S+ 1). 

ratios (6 = 2.28, 3.0,4.0,4.9 and 5.0) are shown graphically in figure 19. It is seen that 
the number of cells observed for the non-integer &values also agree with this step-like 
function. The open circles each represent a single observation, whereas the black dots 
represent a total of 15 experiments; for the majority of observations the observed 
number n thus corresponds with the conjectured relationship very well. Close 
inspection of the organized flow pattern revealed that a cyclonic cell is not always 
present in the tank centre, as was the case for a = 0. Obviously, the topographic effect 
imposed by the curved free fluid surface is now overruled by the bottom topography 
(even for small values of a). Also, it was seen that the largest cells are present in the 
deeper part of the container (see e.g. figures 3 j and 6 h), whereas some smaller cells are 
crowded together in the shallower part, thus bringing the total number to env (6+ 1). 

Once the relationship between the aspect ratio 6 and the number of cells is known, 
it is possible to analyse the stability/instability of the flow as graphically depicted in 
figure 18. The cases 6 <  1 correspond with a sideways sloping bottom, and in the 
organized flow the cell size D is to a good approximation given by D z B. Decreasing 
the &value would not affect the organization of the flow; it would only result in a larger 
number of cells. This implies that in that &-regime (6 < 1) there exists a critical U-value 
a, below which the flow will always become organized, regardless of the &value; on the 
other hand, for a > a, the flow will remain irregular, without showing any 
organization. For this reason the line marking the boundary between ‘stable’ and 
‘unstable’ will be vertical for 6+0, and will intersect the a-axis at a = a,. 

5.3 The spin-up timescale 
As was mentioned in 93, in the experiments with steep bottom topography (a 5 1) it 
is observed that the relative flow in the shallow part of the tank shows a rapid decay. 
This effect can be clearly seen on the subsequent streak photographs of figure 4, 5 and 
7. In particular, it can be observed that the region of spun-up fluid steadily increases 
in time. 

A typical timescale for the linear spin-up of a fluid in an axisymmetric container is 
given by (2). Although this result was derived theoretically for the linear case (see 
Greenspan & Howard 1963), later studies revealed that this timescale has a wider 
validity and that it also applies to nonlinear cases, such as spin-up from rest (Weidman 
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1976a, b). The Ekman layer in the present geometry has a complicated structure, due 
both to the sloping bottom and-more seriously- to the highly unsteady, non- 
axisymmetric flow in the bulk of the fluid domain. For this reason the analysis of the 
Ekman-layer structure poses a serious problem. 

In an attempt to understand the gradual extension of the region of spun-up fluid, it 
is now assumed that the general spin-up timescale (2) also applies to the present 
sloping-bottom configuration, with H representing the actual layer depth H ( y )  = 

(1 - ay/B) No. One thus obtains a spin-up timescale that is essentially dependent on the 
position y :  

TE(y) = - ay/B) TE(o), (35) 
with TE(0) = 2H0/(vs2): 

the Ekman timescale based on the maximum layer depth H,. 
It is not easy to verify the validity of (35) using the observational results, since the 

timescale refers to a decay by a factor of e-l, which can only be determined by accurate 
velocity measurements through the entire flow field ; such detailed measurements have 
not been carried out in the present study. Nevertheless, the y-dependence of the spin- 
up timescale can be clearly observed from the sequence of streak photographs of the 
evolving flow field. In particular, (35) predicts the most prominent y-dependence for 
a = 1, which is confirmed by the experiments shown in figures 4, 5 (a = 0.98) and 7 
(a = 0.89). In cases of smaller a-values the y-dependence is much weaker, as can 
be observed from the photographs shown in figures 3 (a = 0.66) and 6 (a = 0.5). 

In the shallow parts of the tank the spin-up timescale may locally become very small 
and may thus interfere with the timescale associated with the organization of the flow. 
Although it is as yet not completely clear how this interference of timescales affects the 
actual organization process, the observations suggest that the structure of the cells in 
the organized state (provided the bottom slope is not too steep) is entirely determined 
by the smallest horizontal lengthscale of the container, i.e. its width. In particular in 
the slender tank geometries (6 > 3) the relatively rapid spin-up in the shallow part of 
the container only modifies the cellular pattern locally. 

6. Conclusions 
Experiments have been carried out in a tank with a linearly sloping bottom which 

has impulsively been set in rotation. Observations of the (horizontal) surface flow are 
obtained by means of streak photography by a co-rotating camera. Three principal 
stages can be discerned in the spin-up process: 

(i) inertial, inviscid starting flow consisting of a single gyre which under certain 
conditions has a displaced cell centre; 

(ii) organization of the flow into a number of cells which do or do not, depending 
on the depth ratio a and the horizontal aspect ratio 6, reach a quasi-steady state; 

(iii) subsequent decay of relative motions in cells, or subsequent wandering (and 
decay) of cells throughout the tank domain (particularly in the deep region). 

The inertial flow in the first stage is driven by the conservation of (zero) absolute 
vorticity in combination with the non-axisymmetric geometry and consists (as in the 
flat-bottom case) principally of a stream-function flow. This stream-function flow, in 
turn, drives a potential flow when moving cross-isobath. Vertical penetration of the 
potential flow is determined by the smallest lengthscale involved. For shallow basins 
this is the water depth itself and the flow directly contributes to the (observable) surface 
flow (by displacing the cell centre). Alternatively, for deep basins the potential flow is 
bottom-trapped and the total flow at the surface is dominated by the symmetric stream- 
function flow. 
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The quasi-steady state with multiple cells is, as in the vHDD case, not (yet) 
physically interpreted, although some information about the stability boundaries in the 
parameter regime has been determined experimentally. 

Appendix A. Solution of equation (17) for arbitrary a 
Using 

x’ = x/L - 1 2 ,  y’ = 1 -ay/B, !P’ = QB3a2Y (A 1) 

the vorticity equation is, on dropping primes, given by 

ru2yl,,+ ~uy- ( l /Y)  yu = Y, 

with ,LA = &/a, to be solved subject to the condition 

Y=O at x=+:, y = l , l - a .  (A 3) 

&(Y) = ~ ( Y - l ) { Y - ( l - a ) } { Y + ( l - a ) / ( 2 - a ) } .  (A 4) 

Yh=O at y = l , l - a  (A 5 )  

and Yh =-UI,(y) at x =  -k+. (A 6) 

part thus reads m 

A particular solution, satisfying the boundary condition at y = 1,1 -a is 

The remaining equation for the homogeneous part, Yh, is solved subject to the 
condition 

By separation of variables it yields hyperbolic functions in the x-direction and an 
eigenvalue problem, related to Bessel’s equation, in the y-direction. The homogeneous 

(A 7 )  
A X  

yh = n c =o Cncosh($)yen(Y), 

where the eigenvalues, A,, in this expression are determined by the roots of 

J,(h) Y,(A( 1 -a)) - J,(A( 1 -a)) Y,(A) = 0. (A 8) 

en(Y) Y , ( A J  J,(Any)-J,(hn) Y,(hnY), (A 9) 

The functions en( y) in (A 7), given by 

consequently vanish at y = 1, 1 - a and, moreover, are orthogonal with respect to the 
weight function y :  

with &,, the Kronecker delta. For a = 1 the eigenfunctions reduce to en( y) = J,(h, y), 
ensuring regularity at y = 0, and the eigenvalues A, are the zeros of J,(A). 

The unknown coefficients C, in the expansion (A 7) of Yh follow by inserting (A 4) 
and (A 7) in boundary condition (A 6). Subsequently multiplying this by e,(y) and 
integrating over the y-domain yields 
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Here H,(z) is the Struve function (see Abramowitz & Stegun 1955), p. 495), which 
vanishes at z = 0 and z+ co but is positive (though oscillatory) in between. 

Appendix B. Solution of Laplace’s equation in a wedge-shaped container 
The dependency on the index (i) in the eigenvalue pi is suppressed by normalizing the 

potential r$@) and the forcing u:) with a constant C, which is obtained from (25), (26) 
with B = 1 by writing the forcing as 

with 

Thus, with 

C = 852/(L,4). 

one has to solve the following potential problem: 

A$-pz$ = 0, 

The modified Green’s function of this Neumann’s problem for the square is given by 

with 
Am =mn, r, =nn 

and en as defined in (33c). The solution is given as a convolution of this Green’s 
function and the boundary forcing (with ds a line-increment of the boundary of the 
square aG): 

Hence one obtains, with (B 2) and (29) 

cos Am ;(q + 1) cos 7, ;(<+ 1) 
p2 + (+hm)2 + (;7,)2 

1 “  
&(V’ 8 = g c em en[{(- 1)” + l} 1, + {( - 1)” + l} I,] 2 

m, n=o 

F L M  265 6 
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where 

or, with n = 2N, 

Hence 

. (B 3) 
cos Mn(7 + 1) cos Nn(<+ 1) 

,u2 + (M2 + P) n2 
X 

Evaluating the infinite series expressions with the aid of 

n cosh [(nb/aL) (L  - x)] 
ab sinh (nbla) 

m 

cos (nnx/L) = - , O < X < 2 L  c %l 
n=O b2 + n  a 

(Oberhettinger 1973, equation 1.51) in each of the terms in (B 3), we find 

where 

Since N and M are dummies they can be replaced as in (33 a)  by a single dummy, n, and 
then the two remaining series can be combined. Reattaching the index (i) to p, v and 
q5 finally yields expression (33a) ,  when using (B l), (B 2) and (30). 
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